Národní úložiště šedé literatury Nalezeno 3 záznamů.  Hledání trvalo 0.01 vteřin. 
Photocatalytic Decomposition of Wastewater from the Production of Explosives
Brom, Petr ; Brožek, Vlastimil ; Březina, Václav ; Hlína, Michal ; Mastný, L. ; Novák, M.
Water stabilized plasma generator WSP® H-500, operating on the principle of Gerdien arc was used for the photocatalytic decomposition of furazan- and picraminate-based explosives. The generator emits intensive radiation in the range of 300-660 nm, which allows not only to activate photocatalysts based on TiO2, but also other semiconductor oxides with a narrower band gap, such as tungsten oxide. The photocatalytic decomposition of sewage and slurries containing the potassium salt of 4-hydroxy-4,6-dihydro-5,7- dinitrobenzofurazane-3-oxide (KDNBF) or sodium picraminate (NaC6H4N3O5) was performed using the anatase paste and newly developed photocatalyst produced by the company Precheza a.s. The photocatalytic reactor was built using a quartz tube coil with an internal volume of 650 ml, with a nominal size of the irradiated area of 7.5 dm2 (value reduced by the area of the gaps between coil turns) to enable the flow the processing solution or suspension of up to 10 l / min. The centre of the coil is exposed to the plasma jet with the intensity\nof 80 kW; of which 15 kW is transformed into the light radiation. 11% of the radiation output was used for the presented experiments. The time of exposition was 45 mins and 20 l of solution were treated. In the case of KDNBF, 90% of the compound was decomposed. Moreover, 100% of sodium picraminate were decomposed after 15 minutes into low-molecular inorganic compounds. Advantage of the assembly is the ability to treat highly dangerous chemical compounds in a closed cycle and test selective catalyst
Black Chromia Plating for the Solar Radiation Absorbers
Brožek, Vlastimil ; Březina, Václav ; Brom, Petr ; Kubatík, Tomáš František ; Vilémová, Monika ; Mastný, L. ; Novák, M.
Black chromia layers were produced on copper, zirconium and aluminium substrates. These layers are aimed to serve as solar collectors. Efficiency of the layers during UV-VIS, UV radiation and WSP® plasma torch radiation is described. The chromia layers were prepared by a new procedure, i.e. deposition of ammonium dichromate solution using plasma torch or so called Liquid Precursor Plasma Spraying (LPPS). Solution of ammonium dichromate is fed into plasma stream, where dissociation takes place under temperatures of 4000 K – 25000 K. Up to nanometric oxide particles can be produced; the resulting size is dependent on solution concentration and feeding nozzle diameter. The particles impact on substrate and form coating. Using 2 wt.% to 5 wt.% solution of ammonium dichromate and feeding nozzle of 0.2 mm in diameter is the size of produced chromia particles about 6 µm which results in formation of 2 µm to 3 µm thick coating, i.e. according to the theory an optimal thickness 2.5 um for absorption layers, necessary condition for formation energy traps for IR radiation emitters up to 100°C. Moreover, black chromia coating is a suitable corrosion barrier of metallic substrates. \n\n
Corrosion behavior of plasma coatings CuAl10 and CuAl50 on magnesium alloy AZ 91
Kubatík, Tomáš František ; Stoulil, J. ; Stehlíková, K. ; Slepička, P. ; Janata, Marek
The most common magnesium alloy AZ 91 is widely used as a structural material, but its use is limited at higher temperatures and high humidity. Plasma spraying is a technology that allows to prepare protective metallic and non-metallic coatings on a wide variety of substrates including magnesium and its alloys. In this study, CuAl10 and CuAl50 were plasma sprayed on magnesium alloy AZ 91 with the aim to study corrosion resistance of the plasma sprayed coatings. The corrosion resistance of layers was evaluated by the method of electrochemical potentiodynamic measurement as well as long-term corrosion tests in a condensation chamber with 0.5 mol\nNaCl at the temperature of 35 °C for 1344 hours. Layers with 1, 2, 5 passes and passes of CuAl10 with the thickness ranging from 75 to 716 mm and CuAl50 with the thickness ranging from 64 to 566 mm were prepared. The increased corrosion velocity was observed in the case of thin layers of 2 and 5 passes due to the development of a galvanic corrosion couple. The CuAl10 layer prepared with ten passes has an outstanding corrosion resistance.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.